Page last updated: 2024-12-09

3-[[(2,5-dimethyl-3-furanyl)-oxomethyl]amino]benzoic acid

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Cross-References

ID SourceID
PubMed CID798035
CHEMBL ID1607084
CHEBI ID116152

Synonyms (26)

Synonym
3-[(2,5-dimethylfuran-3-carbonyl)amino]benzoic acid
CBMICRO_034774
MLS000123111
smr000123720
3-[(2,5-dimethyl-furan-3-carbonyl)-amino]-benzoic acid
OPREA1_434329
OPREA1_750992
BIM-0034678.P001
CHEBI:116152
AKOS000140900
HMS2449K19
346579-89-3
cambridge id 5832217
CHEMBL1607084
Q27198884
3-[[(2,5-dimethyl-3-furanyl)-oxomethyl]amino]benzoic acid
3-[(2,5-dimethyl-furan-3-carbonyl)-amino]-benzoic acid, aldrichcpr
n-(2,5-dimethyl-3-furoyl)-m-aminobenzoic acid
3-(2,5-dimethylfuran-3-carboxamido)benzoic acid
3-((2,5-dimethylfuran-3-carbonyl)amino)benzoic acid
A912258
BS-51271
3-(2,5-dimethylfuran-3-carboxamido)benzoicacid
SY323328
mfcd01603909
F74510
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (2)

ClassDescription
aromatic amideAn amide in which the amide linkage is bonded directly to an aromatic system.
furansCompounds containing at least one furan ring.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (7)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
LuciferasePhotinus pyralis (common eastern firefly)Potency10.69100.007215.758889.3584AID588342
ATAD5 protein, partialHomo sapiens (human)Potency9.20000.004110.890331.5287AID504466
NPC intracellular cholesterol transporter 1 precursorHomo sapiens (human)Potency3.54810.01262.451825.0177AID485313
ras-related protein Rab-9AHomo sapiens (human)Potency3.98110.00022.621531.4954AID485297
DNA polymerase eta isoform 1Homo sapiens (human)Potency79.43280.100028.9256213.3130AID588591
nuclear receptor ROR-gamma isoform 1Mus musculus (house mouse)Potency35.48130.00798.23321,122.0200AID2551
survival motor neuron protein isoform dHomo sapiens (human)Potency14.12540.125912.234435.4813AID1458
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Bioassays (16)

Assay IDTitleYearJournalArticle
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).2014Journal of biomolecular screening, Jul, Volume: 19, Issue:6
A High-Throughput Assay to Identify Inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).
AID1159537qHTS screening for TAG (triacylglycerol) accumulators in algae2017Plant physiology, Aug, Volume: 174, Issue:4
Identification and Metabolite Profiling of Chemical Activators of Lipid Accumulation in Green Algae.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (8)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (12.50)29.6817
2010's5 (62.50)24.3611
2020's2 (25.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.17

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.17 (24.57)
Research Supply Index2.20 (2.92)
Research Growth Index4.37 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.17)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other8 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]